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Abstract-A computational technique was set forth with the aid of the boundary immobilization technique 
to treat the moving boundary problems occurring in the axisymmetric geometries. The use of a geometry 
index allowed the present method to share many of the features with an existing numerical method 
developed for the planar geometry. A key feature of the present work was that the numerical formulation 
of the pseudo-velocities arising from the boundary immobilization was not derived, as in the conventional 
approaches, directly from the mathematical expressions but based on the physical meanings pertaining to 
them. Therefore, the numerical values of the pseudo-velocities and the time-dependent volume elements 
were determined algebraically instead of solving the field equation for the pseudo-velocities. Several notable 
advantages such as the facility in the numerical implementation and the independence of the coordinate 
systems would be corroborative of the application potentials of the present method to a variety of moving 

boundary problems. 

1. INTRODUCTION 

AMONG a large collection of numerical analyses on 

moving boundary problems, the boundary immo- 
bilization technique has been widely used owing to its 
crucial advantage of working with fixed com- 

putational domains. A survey of the literature indi- 
cates that in contrast to the abundance of publications 
concerning planar geometry moving boundary prob- 
lems in axisymmetric geometries have attracted less 
attention of researchers (e.g. in refs. [l-3]). 

Recently developed in ref. [4] is a numerical method 
which is strongly consistent with the well-established 
finite-volume integration method [5] used for fixed 
boundary problems. However, the development in ref. 
[4] is confined to planar geometry. The motivation of 
the present study is to further extend their method 
to take axisymmetric geometry into consideration. 
Therefore, the major aim of this study will be directed 
to highlight the special features due to the axisym- 
metric geometry. 

A dilemma encountered in using the boundary 
immobilization techniques is that the pseudo- 
velocities (or the mesh velocities) arising from the 
boundary immobilization need to be discretized in 
such a way that the global mass conservation can be 
preserved. Being aware of this nuisance, Thomas and 
Lombard [6] formulate the geometric conservation 
law that governs the time variation of the spatial vol- 
ume element, and they solve it numerically along with 
the flow conservation equations. They presume that 
the failure to satisfy the geometric conservation law 
triggers the grid motion-induced errors and thus is 
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responsible for the oscillations and instabilities en- 
countered in ref. [7]. Although their approach is 
more rigorous than other methods from the stand- 
point of the conservation principles, it is still cumber- 
some to solve the additional field equation. In the 
present study, the numerical values of the pseudo- 

velocities and of the time-dependent volume elements 
are algebraically determined from a self-satisfactory 
geometrical relation instead of solving the differen- 
tial geometric conservation equation. Consequently, 
the method presented here can serve as an efficient 

tool in treating a broad class of complicated problems 
with moving boundaries. 

2. NUMERICAL FORMULATION 

In this section, a computational method applicable 
to both the planar and axisymmetric moving-bound- 

ary problems is described. In order to work with 
the two different coordinate systems in a unified 

approach, we use only one pair of x and y to denote 
spatial independent variables for both the systems. In 
the case of an axisymmetric geometry, the x-coor- 
dinate is aligned with the radial direction and the y- 
coordinate with the axial direction. 

2.1. Governing equations 

We write the conservation equation for a general 
dependent variable 4 as 

jpc#4+; lw-arg ( > 
+$ 

( 
xnpvg-XT: 
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= x”S(x,y) (1) 
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NOMENCLATURE 

P mass flux at interface 

h 
ii 

latent heat [J kg- ‘1 
tube height [m] 

J Jacobian or flux of $ 

PI. Prandtl number, V/Z 

QW heat transfer rate at the tube wall 

Ra Rayleigh number, .g/ITATx),/ctv 

Ste Stefan number, c( T, - T,)/h,, 

t time [s] 

T, melting temperature [K] 

TW tube wall temperature [K] 

UC, u4 covariant velocity components [m s- ‘1 

x, Y spatial independent variables [m] 

%k outer radius of the tube [m] 

& interface position [ml 
2,, Yt axisymmetric terms. 

Greek symbols 

: 

thermal diffusivity [m’ SC’] 
thickness of melt region, x,-x, [m] 

4, g dimensionless transformed coordinates 

Z dimensionless time, (vt/xi)Ste/Pr. 

Superscripts 

+ dimensionless 
axisymmetric 
interface. 

Subscripts 
L liquid 

s solid. 

where the geometry index n has a value of 0 for the 
planar and 1 for the axisymmetric coordinate systems ; 
the density p is assumed to be constant within each 

physical domain of interest. 
In order to overcome computational difficulties in 

accounting for moving boundaries of irregular shape, 
a general curvilinear coordinate system 

x = x(5, ?> t), .Y = ytt, ?> 1) (2) 

is introduced such that the moving boundaries are 
immobilized in the new (5, q) coordinate at all times. 
Equation (1) is then transformed into 

where 

u= u<u*-&u,-x,, V = rrlus -&UC - F, (4) 

J= XJ, z?, = .~‘A’,, F, = x”Y, (5) 

c(< = x”h<h;/J, LY,, = x”h,h;/J (6) 

p: = Xih,/J, /3,, = x”lh</J (7) 

h, = (x;+y;)‘j2, h, = (x,f+~,f)‘~’ (8) 

i, = x5xtl +y;yV, J = x,y, -ys.xo (9) 

x, = yqx, -X,Y,, y, = X<Yr -_)‘c& (10) 

ue = W+Yr~)lh<, u,, = kp+Y,p)lh,. (11) 

Here, it needs to be emphasized that the axisymmetric 
factor X is individually included in the tilded terms 

and in the a(, c(?, PC and & terms. The rationale for 
this unique treatment is based on the dual evaluation 
of x”, which will be discussed later. Since the com- 

putational strategy to solve a set of equations (3)-(11) 
for the case of planar geometry was already discussed 

in ref. [4], focus will be now placed on the treatment 
of equations (5)-(7) into which the effect of the 

axisymmetric geometry is incorporated. 

2.2. Evaluation of the volume elements 

In the axisymmetric case, the physical control vol- 
ume becomes a body of revolution. Referring to Fig. 
I and dropping the constant factor of 27~, the volume 
of the body of revolution generated by rotating 
triangle ABD along the y-axis, fi(ABD), can be 
expressed as 

fi(ABD) = RABDm(ABD) (12) 

where XABo is the x-coordinate of the moment center 
of triangle ABD 

XABD = f(xA+xB+xD) 

Y B 
n A 
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x 
FIG. 1. A finite control volume in the physical (x, y) coor- 
dinate. An axisymmetric case is shown in the figure where 

the axis of revolution is the y-coordinate. 
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(a) @I 

FIG. 2. Schematic diagram of finite control volumes at two consecutive time steps: (a) in the physical 
space, (b) in the computational space. The points e, w, n and s designate face centers. 

and m(ABD) is the area of triangle ABD 

1 xA xB xD xA 
m(ABD) = - 

I 

1 

2 YA YB YD YA 
= j @AYB +xBh 

+XDYA -xBYA -xDh -xAyD). cl41 

Note that m(ABD) assumes a positive value when 
ABD is traced counterclockwise and a negative value 
otherwise, i.e. m(ABD) = -m(ADB). Then, the vol- 

ume *(ABCD) becomes 

G(ABCD) = fi(ABD) +fi(BCD) 

where s(BCD) can be determined similarly. 

(15) 

Figure 2(a) illustrates two quadrangles that rep- 

resent the physical control volumes at two consecutive 
time steps with A”BoCoDo at time to and ABCD at 
time to + At. The volume fi(B’A’AB) that is generated 
by rectangle B”AoAB is obtained similar to equation 
(15) : 

fi(B’A’AB) = fi(B”AoA)+rE(BoAB). (16) 

In case quadrangle B”AoAB has a kink point as shown 
in Fig. 2(a), we have +i(B”AoA) > 0 and %(B’AB) < 
0. The presence of such a kink point during the 
movement of a physical control volume can be 
interpreted that both the pseudo-inflow and the 
pseudo-outflow are imposed on the face of a station- 
ary computational control volume (cf. the north face 
in Fig. 2(a)). This delicate situation clearly explains 
the reason why each control volume has been split 
into two volumes of triangular sections to determine 
its magnitude. 

For the two control volumes shown in Fig. 2(a), it 
is easily found that 

ti(ABCD) -fi(A”BoCoDo) = Kz(A’D’DA) 

-@z(B’C’CB) ++z(B’A’AB) -+i(C’D’DC) (17) 

which has a familiarity with the area rule [4] and, 
therefore, will be provisionally called here the 
extended area rule. Not surprisingly, equation (17) is 
self-satisfactory since it is just derived from a purely 
geometrical point of view. 

2.3. Discretization of the pseudo-velocities 
One peculiar aspect of the boundary immobiliz- 

ation techniques is that they inherently create the 

pseudo-velocities in the transformed equations. The 
existence of these pseudo-velocities induces an 
additional condition, often known as the geometric 
conservation law, that needs to be satisfied. The geo- 
metric conservation law has been obtained from the 
Reynolds transport theorem to give [6] 

aJ” 82, aF, 

at=ag+x (18) 

which can be alternatively deduced from equation (3) 
using p = 4 = 1 and u = v = S = 0 [6]. By integrating 
equation (18) over a finite computational control 
volume shown in Fig. 2(b) and over a finite time 
increment, we have 

+ y,,.,A[.At- y<;.,At*At (19) 

which is by no means as self-satisfactory as the above- 
mentioned extended area rule. 

While the extended area rule reflects the same physi- 
cal concept as the discretized version of the geometric 
conservation law, the former precedes the latter. In 
this regard, we now seek the discretization expressions 
of j, ,?( and ?, from the self-satisfactory, extended 
area rule in order to preserve the global mass con- 
servation. Therefore. we equate each term in equation 
(17) with the corresponding term in equation (19) 
such that 

&At - An = ti(ABCD) 

&An. At = fi(A’D’DA) 

y(,.,Ae.At = +r(B”AoAB) (20) 

with other terms expressed in a similar way. As for 
equation (20), it should be recognized that the axisym- 
metric factor Y in the $ and F, terms has been evalu- 
ated neither at the old time nor at the current time. In 
fact, an essence of the present formulation is that the 
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discretization ol‘ the 2, and p, terms is based on the 
physical instead of mathematical concepts. 

However, in accordance with the implicit dis- 
cretization scheme, the geometric terms unrelated to 
the movement of the physical control volume-i.e. 2:. 
s(~, pi and /+-should be evaluated at the current time 
level. This dual evaluation of the geometric factors 
can be justified from the fact that both the physical 
velocity and the pseudo-velocity fields satisfy inde- 
pendently the transformed mass continuity equation. 

A strong attraction of the present work lies in the 
fact that, when the extra terms due to the axisym- 
metric geometry are handled as explained above. both 
the planar and axisymmetric moving-boundary prob- 
lems can be taken into consideration in a unified way. 
Therefore, no further discussion on the discretization 
procedure will be made from this point on ; the poten- 
tial users of this method are referred to ref. [4] for 
further information. 

3. EXAMPLE PROBLEM 

An example problem is taken from the numerical 
analysis of Sparrow et al. [I] which stands for the 
first numerical simulation accounting for the natural 

convection within the melt. Since the primary empha- 
sis here is on the presentation of a computational 
technique, only a brief treatment is given below and 
a detailed investigation of the problem considered can 

be found elsewhere [8]. 

3.1. Problem description 
A tube of height Hand outer radius X, is embedded 

vertically in a solid, as shown in Fig. 3, and the top 
and bottom surfaces bounding the system are 
insulated. The entire system is initially at the melting 
temperature T,,. At time t = 0, the temperature of the 
outer surface of the tube is raised to a fixed value of 
T, > T,,,. Then, the melting front x, starts to move 
away from the tube wall and, after sufficient elapsed 
times, results in a curved surface due to the dominance 
of natural convection over conduction. The difference 
between the solid and liquid densities is neglected. 

Numerical simulation is initiated using the fol- 

FIG. 3. An illustration of the example phase-change problem 
in the axisymmetric geometry. 

4’ r+ S’ 

Continuity I 0 0 
Momentum u’ I -++,:i;.y _u+/_\-’ 2 

u+ I -?p+/Z.v+ + (Ra/Pr)U 
Energy 0 I/Pr 0 

lowing coordinate transformation : 

I = x,+6(, y = Hq (21) 

where 6 = I, - .Y, and the region 0 < 5, ‘1 < 1 consists 
of the computational domain. Table I summarizes 
the dimensionless governing equations into which the 
assumption of laminar natural convection is incor- 
porated. The boundary conditions except the interface 
are 

T=T, at <=O; T= T, at <= 1 

c;T/++ = 0 at q = 0, I 

u=v=O at t=O, I andq=O, I. (22) 

The dimensionless parameters characterizing this 
problem are Pr, Ra, Ste and H/x,. 

3.2. Treatment of the moving interfuce 

The interfacia! conditions can be directly derived 
from the transformed conservation equation con- 
sidering the continuity condition of fluxes crossing the 
interface [4]. In this matter, we introduce F and J 

so that the interfacial mass and energy balances are 
expressed as [4] 

&=&=P, .?L=.&. (24) 

The interfacial energy balance, j, = j,, is then dis- 
cretized to obtain the value of P from which the 
interface movement can be determined explicitly (for 
details, see ref. [4]). After all the p values are cal- 
culated along the interface, U; = Us = 0 conditions at 
the interface and y, = 0 are used to get 

which can be discretized immediately to obtain the 
new interface position. Especially, the interface con- 
ditions at VI = 0 and r) = 1 can be separately derived 
from the adiabatic conditions, i.e. 

at n = 0, I and (; = I (26) 

the first terms of which are identically zero (due to the 
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FIG. 
case 

4. Numerical results for the interface positions for the 
of H/x, = 4, Ste = 0.15 and Ra = 7 x 104. This work 

(solid lines) ; Sparrow et al. [l] (dotted lines). 

impermeable surface and the isotherm of interface). 
Then, we have & = 0 since aT/aLj, h, # 0. The 
condition /?, = 0 means that the interface should 
intersect orthogonally with the bounding surfaces (or 
dsjdy = 0 at r~ = 0 and rl = 1). However, in the 
present computation, the interface positions at these 
points are rather linearly extrapolated for a com- 
parative study. 

3.3. Numerical results 
A nonuniform 23 x 3 1 grid system is used for com- 

putation. To remove the start-up difficulty, the liquid 
phase of thickness S/x, = 0.01 is assumed to exist 
initially. At any instant of time, computed solutions 
are assumed to have converged when the maximum 
value of normalized residues becomes less than lo-‘. 
The overall energy balance proves to be valid within 
a tolerance of 1% throughout the results presented 
below. 

Numerical results are mainly obtained with Pr = 7 ; 
H/x, = 4, 10 ; and for three different Rayleigh 
numbers, Ra = 7 x 104, 7 x lo’, 7 x 106. In Fig 4, \ the 

1 2 3 4 5 

(a) XIX, 

predicted interface positions at several elapsed times 
for H/x, = 4, Ste = 0.15 and Ra = 7 x lo4 are dis- 
played. As opposed to the monotonically increasing 
slope of the interfaces from ref. [l], our results show 
the presence of an inflection point and depict nearly 
zero slopes at both the bottom and the top of the melt 
region. This leveling-off behavior appears to be mainly 
caused by the inclusion of the nonorthogonal terms, 
because the zero-slope condition at the bounding sur- 
faces was not implemented in the present compu- 
tation, as was mentioned earlier. We point out that the 
experiments in the planar geometry [9] have confirmed 
this gradually vanishing slope of the interface near the 
top adiabatic surface. For the parameters specified 
above, we believe that agreement between the two 
results is in general satisfactory in view of the frontier 
character of the work done in ref. [ 11. 

The interface positions for the higher Rayleigh 
numbers are portrayed in Fig. 5. When compared with 
the above case corresponding to a smaller Ra, the 
time evolution of the interface proceeds substantially 
faster near the top adiabatic surface, while below the 
middle it is rather insensitive to Ra. The results shown 
in Figs. 4 and 5 are indicative of the melting trend in 
response to the variation of Ra, i.e. the melt region is 
concentrated more toward the top for higher values 
of Ra as indicated by the fact that the interface shape 
and its evolution are strongly influenced by the Ray- 
leigh number in the upper portion but not so intensely 
in the lower portion. However, this observation is 
contradictory to that of ref. [l] in which it is claimed 
that the interface slope tends to be more or less uni- 
form with an increasing Ra (see Fig. 5 in ref. [l]). It 
is uncertain that such a discrepancy at a high Ra is 
primarily due to the relatively coarse (12 x 14) grid 
system used there. Meanwhile, Fig. 5(a) shows that 
the numerical results from this study are fairly con- 
sistent with those from ref. [8]. A small disagreement 
with the results of ref. [8] is expected due to the 
inclusion of the pseudo-velocities in the present study. 

Figure 6 illustrates the general characteristics of the 
flow and the isotherm patterns at two selected times. 

1.0 

r 
H 

0.5 

1 2 3 4 5 

(b) XIX, 

FIG. 5. The predicted interface shape and its evolution for the case of H/x, = 4. (a) Ste = 0.1 and 
Ra = 7 x 10’ (or Ra,, = 4.5 x IO’ based on the height) ; (b) Ste = 0.15 and Ra = 7 x 106. This work (solid 

lines) ; Hossfeld [8] (dotted lines). 
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(a) (b) 

FIG. 6. Streamline (left) and isotherm (right) patterns for 
H/.x, = 4, Ra = 7 x lo5 and Ste = 0.1, (a) at t = 0.032 
and (b) at 5 = 0.13. The iso-lines are drawn with equal 

increments. 

Streamlines are drawn with the aid of the stream- 
function defined as 

!?i!=.+g a* 
all ,r ag - If+ F,. (27) 

The isotherm distribution reveals that large gradients 
of temperature are localized both near the top inter- 
face and close to the bottom tube, which is responsible 
for the melting pattern shown in Figs. 4 and 5. 

Figure 7 exhibits the transient heat transfer rate per 
unit length of the tube for three different Rayleigh 

numbers and two height-radius ratios. The pure con- 

FIG. 7. The dimensionless heat transfer per unit length of the 
tube vs the dimensionless time for the case of Ste = 0.15. 
The heat transfer rate at the tube wall, g,, is evaluated from 

& = g -2~x,k(aT/ax) dy and AT = T, - T,,,. 

duction solution (i.e. with Ra = 0) is also shown to 
illustrate the relative importance of the natural con- 
vection. At small times all the curves collapse well 
onto the conduction-curve, thereby reaffirming an 
established fact that conduction plays a predominant 
role of heat transfer mechanism at early melting. Also 
noted are that as Ra increases the detachment from 
the conduction-curve takes place earlier, and that the 

average heat transfer rate per unit length is higher for 
a tube with a smaller H/xw value. This heat transfer 
characteristic may be very useful in the overall design 

of this type of thermal energy storage system [S]. A 
striking difference from Fig. 2 of ref. [I] is that the 
present work does not show any indication of the 
temporal maximum value in the average heat transfer 
rate. This discrepancy seems due to the different 
resolution of the grid system employed (cf. Fig. 23 
in ref. [8]). 
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